Внедрение аналогов Chat GPT в индийскую систему высшего образования: структурное моделирование
en
Научная статья|Мировая экономика
АннотацияПолный текстИсточникиФайлыАвторыАльтметрики
Рой Сумитра
Группа институтов ISMS
Гупта Вишну
Махатма Ганди Каши Видьяпит
Рэй Самрат
Международный институт управленческих исследований
Применение искусственного интеллекта в современном мире стало одной из важнейших национальных задач, особенно в сфере образования. Такие технологии обладают потенциалом для повышения производительности и ускоряют развитие сектора, предоставляя научную информацию студентам в интересной, привлекательной форме. Для исследования взаимосвязей между скрытыми переменными, при моделировании структурных уравнений был использован метод частичных наименьших квадратов (PLS-SEM) с помощью Smart PLS. Цель исследования - предложить эмпирическую поддержку и объяснить переменные, которые могут повлиять на внедрение искусственного интеллекта в высшем образовании. Полученные данные свидетельствуют о том, что В Индии значительное влияние на внедрение технологий искусственного интеллекта, аналогичных Chat GPT, оказывают факторы гедонизма, геймификации, мотивации, удобства и эффективности
УДК: 372.881+004.89
OECD: 5.02
Статья поступила: 16.10.2023
Статья принята: 07.12.2023
Al-Sharafi, M. A., Al-Emran, M., Iranmanesh, M., Al-Qaysi, N., Iahad, N. A., & Arpaci, I. (2022). Understanding the impact of knowledge management factors on the sustainable use of AI-based chatbots for educational purposes using a hybrid SEM-ANN approach.Interactive Learning Environments, 1-20.
Atlas, S. (2023). ChatGPT for higher education and professional development: A guide to conversational AI. https://digitalcommons.uri.edu/cba_facpubs/548.
Bacon, L. D. (1999). Using LISREL and PLS to Measure Customer Satisfaction. Sawtooth Software Conference Proceedings, La Jolla, California, Feb 2-5, 305-306.
Bagozzi, R.P. & Yi, Y. (1988). On the evaluation of structural equation models. J. Acad. Mark. Sci., 16, 74-94.
Banik, S., & Gao, Y. (2023). Exploring the hedonic factors affecting customer experiences in phygital retailing. Journal of Retailing and Consumer Services, 70, 103147.
Bentler, P.M. & Bonett, D.G. (1980) Significance tests and goodness-of-fit in the analysis of covariance structures. Psychol. Bull., 88, 588-600.
Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
Brown, L., & Davis, M. (2018). Enhancing Student Learning through AI-powered Educational Platforms.International Journal of Educational Technology, 32(4), 567-589.
Brown, T. B., et al. (2020). Language models are few-shot learners. ArXiv abs/2005.14165.
Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent technologies for web-based education.International Journal of Artificial Intelligence in Education, 13(2-4), 159-172.
Bulger, M. E., & Mayer, R. E. (2019). The influence of artificial intelligence on learning and instruction. Journal of Educational Psychology, 111(5), 701-712.
Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3443-3463.
Cho, V., & Lai, Y. (2018). The impact of personalized recommendation in E-learning systems: A review.Computers & Education, 128, 398-407.
Clark, D. B., & Martinez-Garza, M. (2019). Learning analytics for 21st-century competencies. Journal of Learning Analytics, 6(2), 1-9.
Clark, R. E. (2010). The impact of motivation on cognitive engagement. Journal of Computer Assisted Learning, 26(4), 289-298.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computer in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132. doi:10.1111/j.1559-1816.1992.tb00945.x.
Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Educational technology & society, 18(3), 75-88.
Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The Evolution of Research on Computer-Supported Collaborative Learning. 10.1007/978-1-4020-9827-7_1.
Duan, Y., Li, H., Whinston, A. B., & Zhang, X. (2009). Do online reviews matter? An empirical investigation of panel data. Decision Support Systems, 47(1), 133-141.
Fornell, C. & Larcker, D.F. (1981) Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res., 18, 39-50.
Garcia, M., & Lee, S. (2017). Enhancing student learning through AI-based analytics: A systematic review. Educational Technology Research and Development, 63(4), 567-589.
Hair Jr., J.F., et al. (2014) Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. European Business Review, 26, 106-121. https://doi.org/10.1108/EBR-10-2013-0128.
Hair, J.F.; Ringle, C.M.; Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract., 19, 139-152.
Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil transactions on benchmarks, standards and evaluations, 2(4), 100089.
Hemachandran, K., Verma, P., Pareek, P., Arora, N., Rajesh Kumar, K. V., Ahanger, T. A.,.. & Ratna, R. (2022). Artificial Intelligence: A Universal Virtual Tool to Augment Tutoring in Higher Education.Computational Intelligence and Neuroscience, 2022, 1410448. https://doi.org/10.1155/2022/1410448.
Henseler, J. & Chin, W.W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Struct. Equ. Modeling A Multidiscip. J., 17, 82-109.
Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. (2014).Common beliefs and reality about partial least squares: Comments on Rönkkö & Evermann. Organ. Res. Methods, 17, 182-209.
Hirschi, A., & Herrmann, A. (2020). Artificial intelligence in career counseling and coaching: A critical review. Frontiers in Psychology, 11, 1-16.
Holzinger, A., Nischelwitzer, A., & Meisenberger, M. (2005). Lifelong-learning support by m-learning: Example scenarios. Journal of Universal Computer Science, 11(7), 1116-1134.
Huang, C. H. (2021). Using PLS-SEM model to explore the influencing factors of learning satisfaction in blended learning. Education Sciences, 11(5), 249.
Huang, Y., Liu, D., & Cui, G. (2020). The impact of virtual reality on learning: A meta-analysis.Computers & Education, 150, 103858.
Hwang, H., Malhotra, N. K., Kim, Y., Tomiuk, M. A., & Hong, S. (2010). A comparative study on parameter recovery of three approaches to structural equation modeling. Journal of Marketing Research, 47 (Aug), 699-712.
Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., & Hall, C. (2016). NMC/CoSN Horizon Report: 2016 K-12 Edition. The New Media Consortium.
Johnson, R., & Williams, B. (2019). Exploring the role of AI-based analytics in improving student engagement. Journal of Educational Research, 35(2), 67-89.
Junco, R., Heiberger, G., & Loken, E. (2011). The effect of Twitter on college student engagement and grades. Journal of Computer Assisted Learning, 27(2), 119-132.
Knox, J. (2020). Artificial intelligence and education in China. Learning, Media and Technology, 45(3), 298-311.
Kujala, S., Roto, V., Väänänen-Vainio-Mattila, K., & Sinnelä, A. (2011, June). Identifying hedonic factors in long-term user experience. In Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces (pp. 1-8).
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Lee, S., & Kim, H. (2017). The impact of AI-assisted time management tools on students' self-regulation skills.Computers & Education, 60(1), 234-256.
Lin, C. S., Wu, S., & Tsai, R. J. (2005).Integrating perceived playfulness into expectation-confirmation model for Web portal context. Information & Management, 42(5), 683-693. doi:10.1016/j.im.2004.04.003.
Lin, J. C., Younessi, D. N., Kurapati, S. S., Tang, O. Y., & Scott, I. U. (2023).Comparison of GPT-3.5, GPT-4, and human user performance on a practice ophthalmology written examination. Eye (London, England), 37(17), 3694-3695. https://doi.org/10.1038/s41433-023-02564-2.
Lu, J., Yao, J. E., & Yu, C. (2005). Personal innova-tiveness, social influences and adoption of wireless Internet services via mobile technology. The Journal of Strategic Information Systems, 14(3), 245-268. doi:10.1016/j.jsis.2005.07.003.
Madan, R., & Ashok, M. (2022). AI adoption and diffusion in public administration: a systematic literature review and future research agenda. Government Information Quarterly, 101774.
Mekler, E. D., Brahlmann, F., Tuch, A. N., & Opwis, K. (2017). Towards understanding the effects of individual gamification elements on intrinsic motivation and performance.Computers in Human Behavior, 71, 525-534.
Melchor, M.Q. & Julián, C.P. (2008). The impact of the human element in the information systems quality for decision making and user satisfaction. J.Comput. Inf. Syst., 48, 44-52.
Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies?. Sustainability, 13(11), 5788.
Mijwil, M. M., Aggarwal, K., Mutar, D. S., Mansour, N., & Singh, R. (2022). The position of artificial intelligence in the future of education: an overview. Journal of Applied Sciences, 10(2).
Mollick, E., & Tornatzky, L. G. (2020). Artificial intelligence in career services: A study of student perceptions. Journal of Career Development, 47(2), 171-186.
O'Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology, 59(6), 938-955.
Owoc, M. L., Sawicka, A., & Weichbroth, P. (2019, August). Artificial intelligence technologies in education: benefits, challenges and strategies of implementation. In IFIP International Workshop on Artificial Intelligence for Knowledge Management (pp. 37-58). Cham: Springer International Publishing.
Pallathadka, H., Sonia, B., Sanchez, D. T., De Vera, J. V., Godinez, J. A. T., & Pepito, M. T. (2022). Investigating the impact of artificial intelligence in education sector by predicting student performance. Materials Today: Proceedings, 51, 2264-2267.
Pavlou, P.A. & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Q., 30, 115-143.
Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism.International Journal of Contemporary Hospitality Management, 32(10), 3199-3226.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Rana, P., Gupta, L. R., Kumar, G., & Dubey, M. K. (2021, April). A taxonomy of various applications of artificial intelligence in education. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) (pp. 23-28). IEEE.
Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson.
Sharma, U., Tomar, P., Bhardwaj, H., & Sakalle, A. (2021). Artificial intelligence and its implications in education. In Impact of AI Technologies on Teaching, Learning, and Research in Higher Education (pp. 222-235). IGI Global.
Siemens, G., & Gasevic, D. (2012). Guest editorial-learning and knowledge analytics. Educational Technology & Society, 15(3), 1-2.
Singh Gill, S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K.,.. & Buyya, R. (2023). Transformative Effects of ChatGPT on Modern Education: Emerging Era of AI Chatbots. arXiv e-prints, arXiv-2306.
Smith, J., & Johnson, A. (2018). The impact of AI-powered tools on student learning outcomes. Journal of Educational Technology, 42(3), 123-145.
Smith, J., & Johnson, A. (2020). The impact of AI-assisted time management tools on students' academic performance. Journal of Educational Technology, 45(2), 123-145.
Srivastava, P., Hassija, T., & Goyal, A. P. (2020). Unleashing the Potential of Artificial Intelligence in the Education Sector for Institutional Efficiency. In Transforming Management Using Artificial Intelligence Techniques (pp. 11-22). CRC Press.
Van Dis, et al., (2023). ChatGPT: five priorities for research, Nature, 614 (7947), 224-226.
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197-221.
Wang, M., & Han, X. (2018). The effectiveness of personalized learning using learning management systems: A meta-analysis. Journal of Educational Technology & Society, 21(2), 154-168.
Wong, K. K. (2010). Handling small survey sample size and skewed dataset with partial least square path modelling. Vue: The Magazine of the Marketing Research and Intelligence Association, November, 20-23.
Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing bulletin, 24(1), 1-32.
Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.
Times citedRecent citationsField Citation RatioRelative Citation Ratio
© Статья. Рой Сумитра, Гупта Вишну, Рэй Самрат, 2023.